Lecture: 5-3 The Fundamental Theorem of Calculus (Part 1)

Example 1: If f is the function whose graph is shown and $g(x)=\int_{0}^{x} f(t) d t$, find the values of $g(0), g(1), g(2), g(3)$, $g(4)$ and $g(5)$. Then, sketch a rough graph of g.

The Fundamental Theorem of Calculus, Part 1 If f is continuous on $[a, b]$, the function g defined by

$$
g(x)=\int_{a}^{x} f(t) d t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b) and $g^{\prime}(x)=f(x)$.

Example 2: The Fresnel function $S(x)=\int_{0}^{x} \sin \left(\pi t^{2} / 2\right) d t$ first appeared in Fresnel's theory of the diffraction of light waves. Recently it was be applied to the design of highways. Find the derivative of the Fresnel function.

Example 3: Find the derivative of the following functions.
(a) $g(x)=\int_{1}^{x^{4}} \sec t d t$
(b) $g(x)=\int_{2 x+1}^{2} \sqrt{t} d t$

Example 4: Find the derivative of $g(x)=\int_{\tan x}^{x^{2}} \frac{1}{\sqrt{2+t^{4}}} d t$

The Fundamental Theorem of Calculus (Part 2) If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

where F is any anti derivative of f, that is, is a function such that $F^{\prime}=f$

Example 5: Evaluate the following integrals.
(a) $\int_{0}^{1} x^{2} d x$
(b) $\int_{0}^{4}\left(1+3 y-y^{2}\right) d y$

To compute integrals effectively you must have your basic anti-differentiation formulas down. You should know that anti-derivatives to the following functions. Note, I'm going to use the \int symbol to mean "find the antiderivative" of the function right after the symbol.

Anti-Derivatives of Common Functions:

- $\int x^{n} d x=\square$
- $\int \sin x d x=$ \qquad
- $\int \cos x d x=$ \qquad
- $\int \sec ^{2} x d x=$ \qquad
- $\int \sec x \tan x d x=$ \qquad
- $\int \csc ^{2} x d x=\square$
- $\int \csc x \cot x d x=$
- $\int e^{x} d x=$ \qquad
- $\int a^{x} d x=$ \qquad
- $\int \frac{1}{1+x^{2}} d x=$ \qquad
- $\int \frac{1}{\sqrt{1-x^{2}}} d x=$ \qquad
- $\int \frac{1}{x} d u=$ \qquad

Example 6: Evaluate the following integrals.
(a) $\int_{2}^{5} \frac{3}{x} d x$
(b) $\int_{0}^{\pi / 2} \cos x d x$

Example 7: Evaluate the following integrals.
(a) $\int_{1}^{8} \sqrt[3]{x} d x$
(b) $\int_{\pi / 6}^{\pi / 2} \csc x \cot x d x$
(c) $\int_{0}^{1} \frac{9}{1+x^{2}} d x$

Example 8: We do not have any product or quotient rules for anti-differentiation. To evaluate an integral that is expressed as a product or quotient you must try to manipulate the integrand (the stuff inside the \int sign) to look like something you know how to anti-differentiate. The following integrals are examples of this. Evaluate the following integrals.
(a) $\int_{1}^{3} \frac{x^{3}+3 x^{6}}{x^{4}} d x$
(b) $\int_{0}^{1} x(3+\sqrt{x}) d x$

Example 9: Evaluate the following integrals.
(a) $\int_{0}^{2}\left(5^{x}+x^{5}\right) d x$
(b) $\int_{1 / 2}^{\sqrt{2} / 2} \frac{1}{\sqrt{1-x^{2}}} d x$

Example 10: What is wrong with the following calculation?

$$
\left.\int_{-1}^{3} \frac{1}{x^{2}} d x=\frac{x^{-1}}{-1}\right]_{-1}^{3}=-\frac{1}{3}-1=-\frac{4}{3}
$$

